

Engineering and Mathematics In Ancient Egypt

Joey Cross

Session 3 Teacher Cohort Academy 2016-2017

Engineering: Stone Architecture

- Stone Architecture
 - The oldest and largest in the world, beginning ca 2600 BCE
 - Coincides with the beginning of the Egyptian state

Huny (?) Sneferu (N) Sneferu (S) Khufu Djedefra Khafra Menkaura Shepseskaf [?] Userkaf Sahura -Neferirkara Shepseskara Neferefra (?) - (probably unfinished) Niuserra Menkauhor Isesi Unas -Teti -Userkara 0 10 20 Pepy I millions of cubic feet Merenra Pepy II Merenra-Antyemsaf Netikerty [Possibly 11 further kings] Neferkara Neferkamenu Ibi Neferkaura Neferkauher Neferirkara [Dynasties IX/X and XI] Amenemhat I Senusret I Amenemhat II Senusret II Senusret III Amenemhat III (Dashur) Amenemhat III (Hawara) Amenemhat IV Sebekneferu [Mazghuna] [Mazghuna] [Saqqara] (Amenemhat IV ?) ------Khendjer (17th of Dyn XIII) -Ameny 'Aamu (?th of Dyn XIII) +

- Stone Architecture
 - Most important types of stone:
 - Limestone
 - Sandstone
 - Granite

- Stone Architecture
 - Was readily available in great quantities within Egypt itself
 - Limestone: from Cairo to just south of Luxor
 - Sandstone: from Luxor on south
 - Granite: widely distributed

- Stone Architecture
 - Quality and symbolism were important
 - Monumental architecture itself was symbolic
 - The most accessible rock was not always sought!
 - Ideal rock for architectural elements was prized

• From an Old Kingdom tomb autobiography (ca 2300 BCE):

"I requested from my lord that there be brought for me a sarcophagus of limestone from Tura, and his majesty had a god's treasurer cross over together with a detachment of sailors under his charge to fetch for me this sarcophagus from Tura. It returned with him in a great cargo boat...together with its lid, a false door, a lintel, two door jambs, and one offering table."

- Quarrying
 - Earliest examples: chert quarries, 40,000 years BP
 - With the centralized state, large expeditions and official quarries were organized

- Quarrying
 - Limestone and sandstone quarries
 - Rock layers were identified for suitable, uniform color and texture
 - Properly spaced fractures were sought after
 - Both open air removal of hilltops and underground mines were used

- How stone was extracted:
 - 1. Rubble was removed from the vein
 - 2. Lines were painted or chisled into the rock as guides
 - 3. Channels were dug out with pickaxes to mark out large blocks, and to allow wooden wedges to be inserted
 - 4. Copper saws, using water, gypsum and quartz sand, cut the rocks.
 - 5. Wooden wedges were used to extract rock (iron was used later)

- How stone was processed:
 - Often times on site.
 - Unfinished obelisks have been found at sites
 - Tomb depictions show completed statues being hauled from quarries

From the tomb of Thuthotep at Deir el-Bersha (Middle Kingdom)

- How was stone moved?
 - Smallish (< 2.5 tons): could be tumbled and flipped by 4-5 men. Heavier stones needed ropes to help.
 - Large stone: wooden sledges.
 - Sledges were pulled across large ramps made of gypsum and packed clay.
 - Rollers made of wood beams were used.
 - Artificial tracks were built to make the process more efficiently (and have bene discovered).

(See Lehner, *The Complete Pyramids*, p.208-209)

Mathematics: Arithmetic

- The evidence we have:
 - Indirect: monuments
 - Direct: mathematical texts
 - Esp. the Rhind Mathematical Papyrus
- Unlike Mesopotamia, very few Egyptian mathematical texts
 have survived

- The nature of the written evidence:
 - No speculation
 - Few proofs
 - Mostly school exercises and reference tables

- Arithmetic
 - A skill that was crucial for scribes.
 - Used for military and engineering purposes especially:
 - Calculating rations
 - Building ramps
 - Planning a building site
 - Erecting large statues

- Arithmetic
 - The basic problem: how to do calculations when you don't have enough fingers
 - How to do calculations with combinations that are not memorized

• The Rhind Mathematical Papyrus

1-126220132220011-171 32 7-2122 341221312=12-3412 29/2031 山小 n= 122. 22 - 171 3.121,23 in III Qmuiselung 23mm 22-8 300 = " 25 A en 111112200 3.323 1. 2 91 111/222 2 53 BADala - 10 - 10 N19121 72300 191900019112 S. _. 111/201211.004 -817-13-12113 13-12-2 1 54/3 a EN3 1226 221 - 191 200 3.1229221 179991913 1911 ZUA 2-2 142221 111 11.16 121, 221 1にといえるでひんご この人をきかみなしいり9171 気が 利了~」」明記書記入空主"110日 - 入引月は「三字の

- Example problem:
 - Write the fractions 1/10 through 9/10.

$$\begin{aligned} \frac{1}{10} &= \frac{1}{10} \quad ; \quad \frac{2}{10} = \frac{1}{5} \quad ; \quad \frac{3}{10} = \frac{1}{5} + \frac{1}{10} \\ \frac{4}{10} &= \frac{1}{3} + \frac{1}{15} \quad ; \quad \frac{5}{10} = \frac{1}{2} \quad ; \quad \frac{6}{10} = \frac{1}{2} + \frac{1}{10} \\ \frac{7}{10} &= \frac{2}{3} + \frac{1}{30} \quad ; \quad \frac{8}{10} = \frac{2}{3} + \frac{1}{10} + \frac{1}{30} \quad ; \quad \frac{9}{10} = \frac{2}{3} + \frac{1}{5} + \frac{1}{30} \end{aligned}$$

- Example problem:
 - 10 men are to share 1 loaf of bread / 2 loafs of bread / ... / 10 loafs of bread. Represent with fractions the amount of bread each man receives.

- Example problem:
 - Calculate the volume of a grain silo with x diameter and y height.
 - Find the area of a trapezoidal plot of land.
 - In 5 plots of land, find the area left in each when a certain section of equal length is sectioned off from each.
 - If a pyramid is x height and its base is of area A, what is its *seked*?

• Arithmetic in Rhind:

47 x 33:

/1 47	/1	47	
2 94	/2	94	
4 188		/10	470
8 376		/20	940
16 752			
/32 1504			
otal: 33 1551		Total:	33 155´

• Arithmetic in Rhind:

1/33 * 47 ... or 47 ÷ 33

The Egyptians said: "Treat 33 so as to obtain 47"

```
So, algebraically: 33x = 47
```


• Arithmetic in Rhind:

47 ÷ 33

/1 33 /3 11 /11 [−] 3 Total: 1+3+11[−] 47

- Geometry
 - Most accurate value for π until the Greeks: 3.16 (.06% error)
 - Known because Rhind reproduces a formula for determining the area of a circle:
 - Subtract 1/9th of the diameter, then square the result.
 - With d = 10:
 - $A = (d d/9)^2 = 79.0123....$

 $A = \pi r^2 = 78.5398...$

- •
- The Egyptian calculation is 99.4% accurate!

- How did the Egyptians determine pi so accurately?
 - Archimedes used circumscribed and inscribed polygons
 - The Egyptians did not know pi per se nor calculate it
 - They simply used the number 9, and it had good results.
- Moral: estimation can go a long ways!

- Pythagorean triples:
 - The Old Kingdom pyramids suggest they understood what a 3:4:5 right triangle was.
- Why would this knowledge be useful?

• The volume of a frustrum:

- The volume of a frustrum:
 - They used formula equivalent to:

- Unknown how they arrived at this. They must have understood:
 - The height of the two pyramids implied by a frustrum are proportional ۲ to their bases
 - How to solve a geometric problem by changing or inscribing the problematic figure

